Optodynamic energy-conversion efficiency during an Er:YAG-laser-pulse delivery into a liquid through different fiber-tip geometries.

نویسندگان

  • Peter Gregorcic
  • Matija Jezersek
  • Janez Mozina
چکیده

When an erbium-laser pulse is directed into water through a small-diameter fiber tip (FT), the absorption of the laser energy superheats the water and its boiling induces a vapor bubble. We present the influence of different FT geometries and pulse parameters on the vapor-bubble dynamics. In our investigation, we use a free-running erbium: yttrium aluminum garnet (Er:YAG) (λ=2.94 μm) laser that was designed for laser dentistry. Its pulse is directed into the water through FTs with a flat and conical geometry. Our results show that in the case of the conical FT, a spherical bubble is induced, while a channel-like bubble develops for the flat FT. The ratio between the mechanical energy of the liquid medium and the pulse energy, which we call the optodynamic energy-conversion efficiency, is examined using shadow photography. The results indicate that this efficiency is significantly larger when a conical FT is used and it increases with increasing pulse energy and decreasing pulse duration. The spherical bubbles are compared with the Rayleigh model in order to present the influence of the pulse duration on the dynamics of the bubble's expansion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optodynamic Characterization of Laser-Induced Bubbles

Laser-induced bubbles can be caused by an optical breakdown in water. They are a result of the optodynamical process where the energy of a high intensity laser pulse is converted into the mechanical energy through an optodynamic conversion. At this process the absorbed optical energy causes plasma expansion that in turn initiates dynamic phenomena: spreading of a shock wave and the development ...

متن کامل

Er:YAG laser debonding of porcelain veneers.

BACKGROUND AND OBJECTIVES The removal of porcelain veneers using Er:YAG lasers has not been previously described in the scientific literature. This study was designed to systematically investigate the efficacy of an Er:YAG laser on veneer debonding, possibly without damage to the underlying tooth, and preservation of the veneer integrity. STUDY DESIGN/MATERIALS AND METHODS The Fourier Transfo...

متن کامل

An Er:YAG laser endoscopic fiber delivery system for lithotripsy of salivary stones.

BACKGROUND AND OBJECTIVES Endoscopic applications of Erbium:YAG lasers are still very limited due to lack of appropriate fiber delivery capabilities. Recent reports on potential advantages of this laser for lithotripsy of ureteral stones prompted us to develop an Er:YAG fiber delivery system for endoscopic lithotripsy of salivary stones. We report on the development of this system and its clini...

متن کامل

The effect of pulse duration, power and energy of fractional Er:YAG laser for transdermal delivery of differently sized FITC dextrans.

We studied fractional Er:YAG laser to enhance transdermal drug delivery of compounds possessing different molecular weights: FITC-dextrans (or FD) with average molecular weights of 4, 10 and 20kDa. Vertical glass Franz diffusion cells were used to study molecular transport through dermatomed porcine skin and histological analysis of laser-treated skin was performed after treatment with differen...

متن کامل

Electrical alternative to pulsed fiber-delivered lasers in microsurgery

An electrical system based on a tapered microelectrode has been developed for generation of high voltage sub-microsecond discharge in physiological medium. Different types of the resulting pulses of current are investigated as well as the dynamics of the associated cavitation bubbles. A highly localized zone of power dissipation—about 20 mm in size—results in a low threshold energy of cavitatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 17 7  شماره 

صفحات  -

تاریخ انتشار 2012